
Measuring the Regularity of Array References �

Erin Parker
�

Bronis R. de Supinski
�

Daniel J. Quinlan
�

parker@cs.unc.edu bronis@llnl.gov dquinlan@llnl.gov�
Department of Computer Science
The University of North Carolina

Chapel Hill, NC 27599-3175

�
Lawrence Livermore National Laboratory
Center for Applied Scientific Computing

Livermore, CA 94551

1. INTRODUCTION
Therunningtimesof largescientificprogramsarestrongly

influencedby thetimespentaccessingmainmemory. Many
mechanisms,suchasprefetching[3], exploit regularaccess
patternsin orderto overlapmemoryaccesseswith compu-
tationand,thus,reducememorystall cycles.Thebenefitof
thesemechanismsdependson the regularity of an applica-
tion’smemoryaccesses.Althoughseveralaccessdescriptors
have beenproposed[2, 4], accessregularity is an intuitive
conceptfor which few formalmetricsexist [1].

We considera programto be regular if it containsarray
referenceswith identifiableaccesspatternsthatarerepeated
asmemoryis traversed. For our purposes,we restrict this
definitionto linearpatterns.We presenta setof metricsthat
quantifyaccessregularity. We have implementeda source-
to-sourcecompilermechanismto measureaccessregularity.
Resultson our samplecodedemonstratethat our analysis
mechanismis fastandaccurate.

2. THREE APPROACHES
We presentthreeapproachesfor measuringthe regular-

ity of a program. Our static approachis a low run-time
overheadmechanismthat usesstatically-determinedinfor-
mation,augmentedat run time only by simplescalardata,
suchas loop bounds. Our dynamicapproachinstruments
arrayreferencesso that their regularity canbepreciselyde-
terminedat run time; this approachhassignificantrun-time
overheadbut is highly accurate.Our overall approachis a
hybrid of the static and dynamicapproaches.It provides
high accuracy with reasonablerun-timeoverheadby using
statically-determinedinformationwherepossible.

Thestatic approach examinesaprogram’sAST (Abstract
SyntaxTree)atcompiletimeto gatherknowledgeof its loop
nestsand the array referencesmadewithin the loop nests.
Basedonanalysisof thearrayindex expressions,wecatego-
rizeanarrayreferenceasregular, irregularor indeterminate.
A regular arrayreferenceis onein which all indicesarelin-
earexpressionsof the LCVs (Loop ControlVariables).An
irregular arrayreferenceis onein which at leastoneindex
is a nonlinearexpressionof the LCVs. An arrayreference
is indeterminate if at leastone index is an expressionthat�
Work performedunderthe auspicesof the U. S. Departmentof

Energy by University of CaliforniaLawrenceLivermoreNational
Laboratory under Contract W-7405-Eng-48,UCRL-JC-144545-
abs. Erin Parker is supportedby a DOE High-PerformanceCom-
puterScienceFellowship.

cannotbeanalyzedat compiletime or thearrayreferenceis
containedin thebodyof a conditional.For example,thear-
rayreferenceA[B[i]] is indeterminatewithoutknowledgeof
how arrayB is initialized,andthearrayreferenceA[� (i)] is
indeterminatewithout knowledgeof whatis returnedby the
function � giveninput i. Althoughmoreaggressivecompile-
time analysiscancategorizesomeoccurrencesof thesetwo
examplesasregularor irregulararrayreferences,in general,
their regularitycannotbedetermineduntil run time.

For any regulararrayreference,eachexecutionof thein-
nermostloop enclosingit will generatea predictablestream
of arrayaccesses.We call sucha streama regular stream.
Our linear restrictionimplies thatarrayreferenceswe clas-
sify asirregulardo not constitutea regularstream.Indeter-
minatearrayreferencesmaybeirregular;ourstaticapproach
assumesthat they are. Therefore,basedon analysisof the
LCVs of the loop nestscontainingregulararrayreferences,
we cancomputethe numberof regular streams,their aver-
agelength,andtheproportionof arrayaccessesthatoccurin
regularstreams,amongotherstatistics.

Thedynamic approach examinesa program’sAST to lo-
catearrayreferencescontainedin loop nests.It doesnot an-
alyzethe indicesof arrayreferencesor LCVs of loop nests.
Instead,we instrumenttheAST with instructionsfor track-
ing the actualvalueof the index to an array reference.A
streamof indicesform aregularstreamif thestridebetween
all valuesis thesame.We keepthesamestatisticsfor regu-
lar streamsasin thestaticapproach.Thedynamicapproach
accuratelycategorizesall arrayreferencesalthoughit makes
no attemptto categorizethemstatically.

The hybrid approach combinesthe two approachesde-
scribedabove. As in the staticapproach,we categorizean
arrayreferenceasregular, irregularor indeterminate.Then
for every regulararrayreference,we computethe statistics
for its regular streams.However, insteadof conservatively
assumingthatevery indeterminatearrayreferenceis irregu-
lar, weperformrun-timetrackingof arrayindicesto discern
actualregularity, asin thedynamicapproach.

It is clearthatthestaticapproachincursvirtually no run-
timeoverhead,but its accuracy canvarywidely andis based
on the numberof indeterminatearray referencesin a pro-
gram. The dynamicapproachenjoys greataccuracy at the
costof anoticeablerun-timeoverhead.Thehybridapproach
is designedto incur largerrun-timeoverheadonly whenit is
necessaryfor greateraccuracy. This relationshipamongthe
accuracy and overheadof the threeapproachesis demon-

stratedin Section3.
W
�

e accomplishautomaticanalysisand instrumentation
of the AST using ROSE [5]. ROSE is a tool for building
source-to-sourcepreprocessors.Thepreprocessorgenerates
anAST from theprogramsourcecode;theAST is thenused
for analysis,instrumentationor optimization. The instru-
mentationof our staticapproachmerelycomputesthe reg-
ularity statisticsoncethe valuesof any run-timeconstants
areknown. In our dynamicapproach,our instrumentation
actuallytracksarrayindex valuesanddetectsany regularity.
Thehybridapproachonly usesthemoreexpensiverun-time
instrumentationfor indeterminatereferences.

3. RESULTS
In thissection,wediscusstheaccuracy andrun-timeover-

headof our threeapproachesfor asimpletestprogram.This
exampleprogramclearlydemonstratesthetrade-offsbetween
ourapproaches;theposterwill includeresultsfor lesstrivial
programs.

do i = 0, regularity_param

do j = 0, MAX

sum += A[j]

do i = 0, 100 - regularity_param

do j = 0, MAX

sum += A[B[j]]

Note that regularity param is an integerprovidedby the
userat run time whosevalue is between0 and 100. B is
anarrayof integerswith sizeat leastMAX, which hasbeen
initialized in oneof two ways. In Case1, B[i] is a random
integerwith a valuebetween0 andMAX-1, andin Case2,
B[i] = i.

Our exampleprogramhasthreearrayaccessstreams:the
accessesto the A array in both loops and the accessesto
theB arraythatdeterminetheA indicesin thesecondloop.
Therefore,in Case1,�����
	��������� regularity param � % of ar-
ray accessesoccurin regularstreams,and,in Case2, 100%
of arrayaccessesoccurin regularstreams.All threeof our
approachescorrectlydetectregularity in Case1 of thesam-
ple program. However, for Case2 of the sampleprogram,
our staticapproachmisclassifiesarrayreferenceA[B[j]] as
irregular, whileourdynamicandhybridapproachescorrectly
classifyit asregular.

In Figure1, we seethat therunningtime requiredby the
sourcecodeinstrumentedusingour hybrid approachis pro-
portional to the numberof indeterminatearray references
that mustbe tracked at run time, asexpected. Notice that
therun-timeoverheadof ourhybridapproachis significantly
lessthenthatof our dynamicapproachevenwhenthevalue
of regularity param is 0. Although the indeterminatearray
referenceA[B[j]] mustbe instrumentedfor run-timedetec-
tion of regularity, our hybrid approachsavesrun-timeover-
headby statically categorizing the array referenceB[j] as
regular.

4. FUTURE WORK
Theeffort to measureregularity in programsis ongoing,

andthe preliminarywork discussedherehasraisedseveral

2

4

6

8

10

12

14

0 20 40 60 80 100

se
co

nd
s�

regularity_param

static
dynamic

hybrid
no instrumentation

Figure 1: Running time of the example program when
instrumented according to each of the three approaches
(MAX=100,000).

issues.It is undesirableto useourdynamicapproachto mea-
suretheregularityof largeLLNL codes,asit will addover-
headto alreadylong-runningprograms.Likewise, the pos-
sible inaccuracy of our staticapproachon complicatedpro-
gramsmakesit unsuitable.Therefore,we areinterestedto
seetheaccuracy/overheadtrade-off of usingour hybrid ap-
proachon suchprograms.Furthermore,our analysiscanbe
expandedto includereferencesto arrayclassobjectsin use
at LLNL, which we expectto introducenew challenges.

5. REFERENCES
[1] T. M. Chilimbi. Efficient representationsand

abstractionsfor quantifyingandexploiting data
referencelocality. In Proceedings of ACM PLDI, pages
191–202,June2001.

[2] P. Havlak andK. Kennedy. An implementationof
interproceduralboundedregularsectionanalysis.IEEE
Transactions on Parallel and Distributed Systems,
2(3):350–360,July1991.

[3] T. C. Mowry. Toleratinglatency in multiprocessors
throughcompiler-insertedprefetching.ACM
Transactions on Computer Systems, 16(1):55–92,
February1998.

[4] Y. Paek,J.Hoeflinger, andD. Padua.Simplificationof
arrayaccesspatternsfor compileroptimizations.In
Proceedings of ACM PLDI, volume33,pages60–71,
May 1998.

[5] D. Quinlan.ROSE:Compilersupportfor
object-orientedframeworks.In Parallel Processing
Letters, volume10,2000.Also presentedat Conference
on ParallelCompilers(CPC2000),Aussois,France,
January2000.

